3.2.12 \(\int \frac {\text {sech}^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx\) [112]

Optimal. Leaf size=50 \[ \frac {(a+b) \text {ArcTan}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} b^{3/2} d}-\frac {\tanh (c+d x)}{b d} \]

[Out]

(a+b)*arctan(b^(1/2)*tanh(d*x+c)/a^(1/2))/b^(3/2)/d/a^(1/2)-tanh(d*x+c)/b/d

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 50, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3756, 396, 211} \begin {gather*} \frac {(a+b) \text {ArcTan}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} b^{3/2} d}-\frac {\tanh (c+d x)}{b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^4/(a + b*Tanh[c + d*x]^2),x]

[Out]

((a + b)*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(Sqrt[a]*b^(3/2)*d) - Tanh[c + d*x]/(b*d)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 396

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(
p + 1) + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 3756

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/(c^(m - 1)*f), Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x)
^n)^p, x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2] && (IntegersQ[n, p
] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])

Rubi steps

\begin {align*} \int \frac {\text {sech}^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx &=\frac {\text {Subst}\left (\int \frac {1-x^2}{a+b x^2} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=-\frac {\tanh (c+d x)}{b d}+\frac {(a+b) \text {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,\tanh (c+d x)\right )}{b d}\\ &=\frac {(a+b) \tan ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} b^{3/2} d}-\frac {\tanh (c+d x)}{b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.11, size = 50, normalized size = 1.00 \begin {gather*} \frac {(a+b) \text {ArcTan}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} b^{3/2} d}-\frac {\tanh (c+d x)}{b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^4/(a + b*Tanh[c + d*x]^2),x]

[Out]

((a + b)*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(Sqrt[a]*b^(3/2)*d) - Tanh[c + d*x]/(b*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(196\) vs. \(2(42)=84\).
time = 2.18, size = 197, normalized size = 3.94

method result size
derivativedivides \(\frac {\frac {2 a \left (a +b \right ) \left (-\frac {\left (a -\sqrt {b \left (a +b \right )}+b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}+\frac {\left (-a -\sqrt {b \left (a +b \right )}-b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{b}-\frac {2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d}\) \(197\)
default \(\frac {\frac {2 a \left (a +b \right ) \left (-\frac {\left (a -\sqrt {b \left (a +b \right )}+b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}+\frac {\left (-a -\sqrt {b \left (a +b \right )}-b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{b}-\frac {2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d}\) \(197\)
risch \(\frac {2}{b d \left (1+{\mathrm e}^{2 d x +2 c}\right )}-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}-2 a b}{\left (a +b \right ) \sqrt {-a b}}\right ) a}{2 \sqrt {-a b}\, d b}-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}-2 a b}{\left (a +b \right ) \sqrt {-a b}}\right )}{2 \sqrt {-a b}\, d}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}+2 a b}{\left (a +b \right ) \sqrt {-a b}}\right ) a}{2 \sqrt {-a b}\, d b}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}+2 a b}{\left (a +b \right ) \sqrt {-a b}}\right )}{2 \sqrt {-a b}\, d}\) \(255\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^4/(a+b*tanh(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

1/d*(2/b*a*(a+b)*(-1/2*(a-(b*(a+b))^(1/2)+b)/a/(b*(a+b))^(1/2)/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1/2)*arctanh(a*t
anh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1/2))+1/2*(-a-(b*(a+b))^(1/2)-b)/a/(b*(a+b))^(1/2)/((2*(b*(a
+b))^(1/2)+a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1/2)))-2/b*tanh(1/2*d*x
+1/2*c)/(tanh(1/2*d*x+1/2*c)^2+1))

________________________________________________________________________________________

Maxima [A]
time = 0.52, size = 63, normalized size = 1.26 \begin {gather*} -\frac {{\left (a + b\right )} \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{\sqrt {a b} b d} - \frac {2}{{\left (b e^{\left (-2 \, d x - 2 \, c\right )} + b\right )} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*tanh(d*x+c)^2),x, algorithm="maxima")

[Out]

-(a + b)*arctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b)/sqrt(a*b))/(sqrt(a*b)*b*d) - 2/((b*e^(-2*d*x - 2*c) + b
)*d)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 172 vs. \(2 (42) = 84\).
time = 0.39, size = 649, normalized size = 12.98 \begin {gather*} \left [-\frac {{\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a + b\right )} \sinh \left (d x + c\right )^{2} + a + b\right )} \sqrt {-a b} \log \left (\frac {{\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right )^{4} + 4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (a^{2} + 2 \, a b + b^{2}\right )} \sinh \left (d x + c\right )^{4} + 2 \, {\left (a^{2} - b^{2}\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right )^{2} + a^{2} - b^{2}\right )} \sinh \left (d x + c\right )^{2} + a^{2} - 6 \, a b + b^{2} + 4 \, {\left ({\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right )^{3} + {\left (a^{2} - b^{2}\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) - 4 \, {\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a + b\right )} \sinh \left (d x + c\right )^{2} + a - b\right )} \sqrt {-a b}}{{\left (a + b\right )} \cosh \left (d x + c\right )^{4} + 4 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (a + b\right )} \sinh \left (d x + c\right )^{4} + 2 \, {\left (a - b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, {\left (a + b\right )} \cosh \left (d x + c\right )^{2} + a - b\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{3} + {\left (a - b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + a + b}\right ) - 4 \, a b}{2 \, {\left (a b^{2} d \cosh \left (d x + c\right )^{2} + 2 \, a b^{2} d \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + a b^{2} d \sinh \left (d x + c\right )^{2} + a b^{2} d\right )}}, \frac {{\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a + b\right )} \sinh \left (d x + c\right )^{2} + a + b\right )} \sqrt {a b} \arctan \left (\frac {{\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a + b\right )} \sinh \left (d x + c\right )^{2} + a - b\right )} \sqrt {a b}}{2 \, a b}\right ) + 2 \, a b}{a b^{2} d \cosh \left (d x + c\right )^{2} + 2 \, a b^{2} d \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + a b^{2} d \sinh \left (d x + c\right )^{2} + a b^{2} d}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*tanh(d*x+c)^2),x, algorithm="fricas")

[Out]

[-1/2*(((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x + c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)^2 + a + b)*sqr
t(-a*b)*log(((a^2 + 2*a*b + b^2)*cosh(d*x + c)^4 + 4*(a^2 + 2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2
+ 2*a*b + b^2)*sinh(d*x + c)^4 + 2*(a^2 - b^2)*cosh(d*x + c)^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 + a^
2 - b^2)*sinh(d*x + c)^2 + a^2 - 6*a*b + b^2 + 4*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^3 + (a^2 - b^2)*cosh(d*x +
 c))*sinh(d*x + c) - 4*((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x + c)*sinh(d*x + c) + (a + b)*sinh(d*x + c
)^2 + a - b)*sqrt(-a*b))/((a + b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x
 + c)^4 + 2*(a - b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(
d*x + c)^3 + (a - b)*cosh(d*x + c))*sinh(d*x + c) + a + b)) - 4*a*b)/(a*b^2*d*cosh(d*x + c)^2 + 2*a*b^2*d*cosh
(d*x + c)*sinh(d*x + c) + a*b^2*d*sinh(d*x + c)^2 + a*b^2*d), (((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x +
 c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)^2 + a + b)*sqrt(a*b)*arctan(1/2*((a + b)*cosh(d*x + c)^2 + 2*(a + b)
*cosh(d*x + c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)^2 + a - b)*sqrt(a*b)/(a*b)) + 2*a*b)/(a*b^2*d*cosh(d*x +
c)^2 + 2*a*b^2*d*cosh(d*x + c)*sinh(d*x + c) + a*b^2*d*sinh(d*x + c)^2 + a*b^2*d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {sech}^{4}{\left (c + d x \right )}}{a + b \tanh ^{2}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**4/(a+b*tanh(d*x+c)**2),x)

[Out]

Integral(sech(c + d*x)**4/(a + b*tanh(c + d*x)**2), x)

________________________________________________________________________________________

Giac [A]
time = 0.59, size = 70, normalized size = 1.40 \begin {gather*} \frac {\frac {{\left (a + b\right )} \arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + b e^{\left (2 \, d x + 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{\sqrt {a b} b} + \frac {2}{b {\left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right )}}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*tanh(d*x+c)^2),x, algorithm="giac")

[Out]

((a + b)*arctan(1/2*(a*e^(2*d*x + 2*c) + b*e^(2*d*x + 2*c) + a - b)/sqrt(a*b))/(sqrt(a*b)*b) + 2/(b*(e^(2*d*x
+ 2*c) + 1)))/d

________________________________________________________________________________________

Mupad [B]
time = 1.61, size = 176, normalized size = 3.52 \begin {gather*} \frac {2}{b\,d\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}+1\right )}+\frac {\ln \left (-\frac {4\,{\mathrm {e}}^{2\,c+2\,d\,x}}{b}-\frac {2\,\left (a\,d+b\,d+a\,d\,{\mathrm {e}}^{2\,c+2\,d\,x}-b\,d\,{\mathrm {e}}^{2\,c+2\,d\,x}\right )}{\sqrt {-a}\,b^{3/2}\,d}\right )\,\left (a+b\right )}{2\,\sqrt {-a}\,b^{3/2}\,d}-\frac {\ln \left (\frac {2\,\left (a\,d+b\,d+a\,d\,{\mathrm {e}}^{2\,c+2\,d\,x}-b\,d\,{\mathrm {e}}^{2\,c+2\,d\,x}\right )}{\sqrt {-a}\,b^{3/2}\,d}-\frac {4\,{\mathrm {e}}^{2\,c+2\,d\,x}}{b}\right )\,\left (a+b\right )}{2\,\sqrt {-a}\,b^{3/2}\,d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cosh(c + d*x)^4*(a + b*tanh(c + d*x)^2)),x)

[Out]

2/(b*d*(exp(2*c + 2*d*x) + 1)) + (log(- (4*exp(2*c + 2*d*x))/b - (2*(a*d + b*d + a*d*exp(2*c + 2*d*x) - b*d*ex
p(2*c + 2*d*x)))/((-a)^(1/2)*b^(3/2)*d))*(a + b))/(2*(-a)^(1/2)*b^(3/2)*d) - (log((2*(a*d + b*d + a*d*exp(2*c
+ 2*d*x) - b*d*exp(2*c + 2*d*x)))/((-a)^(1/2)*b^(3/2)*d) - (4*exp(2*c + 2*d*x))/b)*(a + b))/(2*(-a)^(1/2)*b^(3
/2)*d)

________________________________________________________________________________________